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Period-doubling bifurcations and chaos in the decremental propagation
of a spike train in excitable media
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Decremental propagation of a spike train in an excitable medium is studied using a computer simula-
tion of the FitzHugh-Nagumo model. Period-doubling bifurcations and chaos in the propagation length
of the spikes occur as the period of the stimulus pulses decreases.

PACS number(s): 87.10.+¢, 05.45.+b, 87.22.Jb

When stimulus pulses are added to one end of an excit-
able medium, e.g., a nerve fiber, spikes are generated and
are propagated toward the other end of the medium. The
propagated spikes keep their proper shape when the
medium has a normal excitability. However, the spikes
are diminished and disappear during propagation, i.e.,
the spikes are decrementally propagated, when the exci-
tability of the medium is lowered.

Decremental propagation has been observed in a nar-
cotized nerve fiber [1,2]. Computer simulation of the
Hodgkin-Huxley model has also shown that reduction of
the excitability of the nerve membrane, e.g., because of
decreases in channel conductance, causes decremental
propagation [3-5].

I consider a decrementally propagated spike train gen-
erated by periodic stimulus pulses. Experiments on the
squid giant axon [6,7] and analyses of neuron models
[8-10] have shown that, in media of normal excitability,
the refractory period has considerable effects on spike
generation and causes chaotic responses. The firing rate,
the ratio of the number of spikes generated to the number
of stimulus pulses, is characterized by a chaotic Cantor-
like function. Computer simulation of the FitzHugh-
Nagumo model shows that the successive propagation
lengths of the spikes period-double as the period of the
stimulus pulses decreases.

The FitzHugh-Nagumo model is one of the simplest
models of excitable media [11,12]. It is described

dv(x,1) /9t =% (x,1)/0x %+ f(v (x,1))—w(x,¢) ,
Jw(x,t)/0t =b[v(x,t)—dw(x,t)], (1)
fw=—v—a)v—1),

where v (x,t?) corresponds to an excitation variable and
w (x,t) corresponds to a recovery variable.

The excitability of the medium depends on parameters
a, b, and d [13]. In the simulation, these values were set
to a =0.2, b =0.005, d =1.0, so that no stationary trav-
eling wave solutions exist and spikes were decrementally
propagated. The explicit finite-difference method was
used to solve (1) numerically. The space x was discre-
tized into Ax =0.2 and the time ¢ was discretized into
At =0.01. [Calculation with coarser step size (Ax =1.0,
At =0.4) gives similar results.] The total length of the
medium was taken to be 80.0. A sealed-end boundary
condition (a zero flux condition) was assumed at both
ends. Periodic stimulus pulses were added at x =0 to
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generate spikes propagated toward the other end. The
amplitude of each stimulus pulse was 1.0 and its duration
was 4.0.

A spatial form of a decrementally propagated spike is
shown in Fig. 1, in which v (x,¢) is plotted from ¢ =10.0
to 250.0 at intervals of 40.0. The spike decreases in
height during propagation and disappears at x =65.8.

Figure 2 shows the trajectory {#;(x)} of a propagated
spike train in the x-¢ plane, where #;(x) is the time at
which the front of the jth spike crosses v =0.3 at posi-
tion x. When the period T of the stimulus pulses is large
[T =360.0 (a)], all spikes except for the first spike disap-
pear at the same position: x =65.0. That is, the propa-
gation length X; of the jth spike (j > 1) is the same.

As the period of the stimulus pulses decreases, howev-
er, patterns of {7;(x)} vary. A pattern with period 2 is
obtained at 7 =180.0 (b). The sequence of the propaga-
tion length X; converges to a two-cycle (58.4, 11.2). A
four-cycle pattern with X;=(59.0, 2.4, 10.2, 2.4) is ob-
tained at 7' =90.0 (c).

The trajectory {¢;(x)} does not converge to any cyclic
pattern at 7 =80.0 (d). The corresponding sequence
{X;} (1=j<100) of the propagation length is plotted in
Fig. 3(a). It varies in an irregular manner. The irregu-
larity in {X;} continues up to j =5200. The power spec-
trum S(w) of {X;} (1001 =;<5096) is continuous and
does not have clear peaks [Fig. 3(b)]. The return map of
{X;} (201 </ =5200) is also plotted in Fig. 3(c). It has a
one-dimensional structure with a narrow steep hump and
a wide flat region, though it is not perfectly single valued.
The sequence is thus considered to be chaotic.
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FIG. 1. Spatial form v(x,t) of a decrementally propagated
spike.
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FIG. 2. Trajectory t;(x) of a spike train generated by stimulus pulses of period T. (a) T =360.0, stationary; (b) T =180.0, two-
cyclic; (c) T =90.0, four-cyclic; (d) T =80.0, chaotic; (e) T =70.0, three-cyclic.
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FIG. 3. Chaotic response to stimulus pulses of T =80.0. (a) Propagation length X; of jth spike; (b) Power spectrum S(w) of X;; (c)
Return map of X.



1710 BRIEF REPORTS 50

(b)

80.0

40.0

< (a)

c

(e}

“

[

<t

of

o h T . A n

0.0 200.0 400.0
S (c)
(e
© 3
Loe

S
72.0

77.0 T 82.0

FIG. 4. Bifurcation diagram of propagation length X;. (a) 0= 7 =400.0; (b) 50.0 =T =100.0; (c) 72.0=T7 = 82.0.

For the smaller stimulus period, T =70.0, a pattern
with period 3 [X;=(21.6, 2.0, 3.4)] is obtained (e).

Figure 4(a) shows the bifurcation diagram of the prop-
agation length X, in which {X;} (101 <j <300) are plot-
ted as the period T of the stimulus pulses decreases from
400.0 to 10.0. The propagation length decreases as the
stimulus period decreases. However, the propagation
length bifurcates into a pattern with period 2 at
T =200.0. One branch increases and the other decreases
after the bifurcation. The upper branch then decreases,
and again bifurcates at T'=98.6, yielding a pattern of X;
with period 4.

The patterns of X in the region in which X; are widely
distributed, i.e., (73.7<7<80.1), (56.4<T<62.7) are
magnified in Fig. 4(b). Chaotic sequences are observed in
these regions.

A periodic window of period 3 is clear between
62.8<T =73.6. Windows of periods 5, 7, and 8 are also
denoted in Fig. 4(c).

Further decrease in the stimulus period makes the se-
quence of the propagation length converge from an

eight-cycle (T =56.3) to a fixed point (7" =45.6) through
a reversal of the period-doubling cascade.

We are currently studying the mechanism causing the
period doubling. In media of normal excitability, the re-
fractory period causes period-doubling bifurcations in the
internal state of the media (e.g., in the membrane poten-
tial of a nerve fiber) [9]. In media of low excitability, de-
cremental propagation shows period doubling in the
propagation length of spikes.

Period-doubling bifurcations and chaos were observed
in the decrementally propagated spike train in a simple
model of excitable media. Spike generation in media of
normal excitability is well described by the one-
dimensional circle map; the firing rate is a Cantor-like
function of the stimulus period [8-10]. Decremental
propagation for low excitability causes qualitative
changes in the response of excitable media to periodic
stimulus pulses.

This work was partly supported by the Sasakawa
Scientific Research Grant from The Japan Science So-
ciety.

[1]1I. Tasaki, Nervous Transmission (Thomas, Springfield,
1953).

[2] R. Lorente de N6 and G. A. Condouris, Proc. Natl. Acad.
Sci. U.S.A. 45, 592 (1959).

[3]J. W. Cooley and F. A. Dodge, Biophys. J. 6, 538 (1966).

[4]N. H. Sabah and K. N. Leibovic, Biophys. J. 12, 1132
(1972).

[5] B. I. Khodorov and Ye. N. Timin, Biophys. 16, 513 (1971).

[6] G. Matsumoto et al., Phys. Lett. A 123, 162 (1987).

[7] N. Takahashi et al., Physica D 43, 318 (1990).

[8] S. Yoshizawa, H. Osada, and J. Nagumo, Biol. Cybern. 45,

23 (1982).

[9] K. Aihara, in Bifurcation Phenomena in Nonlinear Sys-
tems and Theory of Dynamical Systems, edited by H.
Kawakami (World Scientific, Singapore, 1990).

[10] S. Sato and S. Doi, Math. Biosci. 112, 243 (1992).

[11]J. Nagumo, S. Arimoto, and S. Yoshizawa, Proc. IRE 50,
2061 (1962).

[12] R. FitzHugh, in Biological Engineering, edited by H. P.
Schwan (McGraw-Hill, New York, 1969).

[13] J. Rinzel and J. B. Keller, Biophys. J. 13, 1313 (1973).



